

Список использованных сокращений

Применительно к настоящему отчету используются следующие сокращения:

БПК5	- биохимическое потребление кислорода за 5 суток					
B3	- высокое загрязнение природной среды					
ГОСТ	- Государственный стандарт					
ГСН	- Государственная система наблюдений за загрязнением					
1 011	природной среды					
ИЗА	- индекс загрязнения атмосферы					
	• •					
КВЭ	- количество вещества эквивалента					
ЛПВ	- лимитирующий признак вредности					
МИ	- методика измерения					
МЭД	- мощность экспозиционной дозы гамма-излучения					
мБС	- метры Балтийской системы					
ОБУВ	- ориентировочно-безопасный уровень воздействия					
ПДК	- предельно-допустимая концентрация					
ПН3	- пост наблюдения за загрязнением атмосферного воздуха					
РД	- руководящий документ					
СПАВ	- синтетические поверхностно-активные вещества					
УГМС	- Управление по гидрометеорологии и мониторингу					
	окружающей среды					
УКИЗВ	- удельный комбинаторный индекс загрязненности воды					
ХПК	- химическое потребление кислорода					
ЦГМС	- Центр по гидрометеорологии и мониторингу загрязнения					
	окружающей среды					
ЭВ3	- экстремально высокое загрязнение природной среды					

ОБЗОР МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ ЗАГРЯЗНЕНИЯ ВОЗДУХА ПО ТЕРРИТОРИИ ПЕНЗЕНСКОЙ ОБЛАСТИ ЗА АПРЕЛЬ 2022 ГОДА

В апреле в Пензенском регионе складывались благоприятные условия для очищения воздушного бассейна от загрязняющих примесей. Этому способствовало преобладающее влияние циклонов. При похождении атмосферных фронтов отмечались интенсивные осадки смешанного характера (до 6-19 мм за полусутки) и усиление ветра до 15-16 м/сек. Кроме того, активное развитие конвекции не позволяло образовываться в приземном слое атмосферы задерживающим слоям. В результате сложившихся погодных условий происходило постоянное обновление воздушного бассейна, не позволяя вредным веществам длительное время задерживаться в приземном слое атмосферы.

АТМОСФЕРНЫЙ ВОЗДУХ

Наблюдения проводятся на четырех стационарных постах государственной службы наблюдений (ГСН), расположенных по адресам:

ПНЗ№1 – ул. Центральная, 14а,

ПН3№3 – пересечение ул. Долгова и ул. Чехова,

ПНЗ№7 – пересечение ул. Беляева и проезда Рогатки,

ПНЗ №8 – проспект Строителей, 37а.

Посты условно подразделяются на «городские фоновые» в жилых районах (посты №1 и №8), «промышленные», вблизи предприятий (пост №7) и «авто», вблизи автомагистралей или в районах с интенсивным движением автотранспорта (пост №3). Это деление условно, т.к. строительство города и размещение предприятий не позволяет сделать четкого разделения районов.

В апреле было отобрано и проанализировано 1924 пробы на основные и специфические примеси.

Среднемесячная концентрация **диоксида азота** по городу составила 0,3 ПДК. Максимальная из разовых концентраций этой примеси составила 0,2 ПДК и была зафиксирована 1 апреля на ПНЗ №8 в 19 часов при слабом восточно-юго-восточном ветре.

Среднемесячная концентрация формальдегида составила 1,0 ПДК. Максимальная из разовых концентраций его зафиксирована 6 апреля в 19 часов при слабом западно- юго-западном ветре на ПНЗ № 1 и составила 0,3 ПДК. Основными источниками загрязнения формальдегидом являются предприятия по производству строительных материалов, пластмасс, также большое его количество присутствует в выбросах автотранспорта.

Средняя за месяц концентрация **фенола** составила 0,3 ПДК. Максимальная из разовых концентраций зафиксирована 8 апреля на ПНЗ №3 в 19 часов при умеренном юго-восточном ветре. Концентрация составила 0,3 ПДК.

Среднемесячная концентрация **окиси углерода** по городу была на уровне 0,2 ПДК. Максимальная из разовых концентраций в апреле составила 0,6 ПДК. Зафиксирована концентрация была на ПНЗ №3 21 апреля в 07 часов при слабом восточном ветре.

Среднемесячные концентрации загрязняющих веществ в атмосферном воздухе

Таблица 1

Примеси	ПДК с.с.	Среднемесячна я концентрация в долях ПДК с.с.	Число случаев выше ПДКс.с.
Диоксид азота	0,1	0,3	
Оксид азота	-	-	
Диоксид серы	0,05	0,05	
Оксид углерода	3	0,2	
Фенол	0,006	0,3	
Формальдегид	0,01	1,0	26
Пыль	0,15	0,1	
Хлорид водорода	0,1	1,1	

Предельно допустимая концентрация ЭТО максимальная атмосферном концентрация примеси воздухе, отнесенная определенному времени осреднения, которая при периодическом воздействии или на протяжении всей жизни человека и его потомства, не оказывает и не окажет прямого или косвенного влияния на него, (включая отдаленные последствия), и на окружающую среду в целом.

В связи с тем, что кратковременные воздействия не обнаруживаемых по запаху вредных веществ могут вызывать функциональные изменения в коре головного мозга и зрительном анализаторе, были введены значения максимальных разовых ПДК. С учетом вероятности длительного воздействия вредных веществ на организм человека были введены значения средних суточных ПДК. Таким образом, установлены для каждого вещества два норматива:

максимально разовая предельно допустимая концентрация (ПДКм.р.) — максимальная 20-30 минутная концентрация, при воздействии которой не возникают рефлекторные реакции у человека (задержка дыхания, раздражение слизистой оболочки глаз, верхних дыхательных путей и др.).

среднесуточная предельно допустимая концентрация (ПДКс.с.) — средняя за сутки концентрация, при воздействии которой не развиваются общетоксичные, мутагенные, канцерогенные эффекты при неограниченно длительном вдыхании.

Предельно допустимые концентрации (ПДК) определяемых загрязняющих веществ в атмосферном воздухе

Таблица 2

	пдк	Класс	
Примесь	ПДК м.р. (максимально - разовая)	ПДК с.с. (средне- суточная)	опасности вещества
Пыль	0,5	0,15	3
Диоксид серы	0,5	0,05	3
Оксид углерода	5,0	3,0	4
Диоксид азота	0,2	0,04	3
Оксид азота	0,4		3
Сероводород	0,008	-	2
Фенол	0,01	0,006	3
Гидрохлорид	0,2	0,1	2
Формальдегид	0,05	0,01	1

В связи с тем, что в городах проводится определение различного количества примесей принято рассчитывать *ИЗА по пяти веществам*, вносящим *наибольший вклад* в загрязнение атмосферы.

ГИДРОЛОГИЧЕСКИЙ ОБЗОР

по Пензенскому водохранилищу и рекам Пензенской области за апрель 2022 года

Вскрытие рек происходило с 20 марта по 3 апреля, что на 3-17 дней раньше нормы. Реки полностью очистились ото льда 24 марта - 3 апреля.

Половодье на реках Пензенской области началось в первой декаде апреля. Пик половодья на реках пришелся на 4-11 апреля.

С 19 апреля Пензенское водохранилище было свободно ото льда, температура воды на 30 апреля – 7.0 °С.

Характерные элементы водного режима

Пензенского водохранилища за апрель 2022 года

Таблипа

Название водомерного	Уровни воды, мБС		Изменение уровня за	По состоянию на 30 апреля 2022 года		
поста	Макси-	Мини-	Средний	месяц, см	Уровень рожи и ГС	Температура
	мальный	мальный	за месяц		воды, мБС	воды, °С
Вдхр. Пензенское – Сурский гидроузел	150.05	147.66	149.28	+238	150.04	7.0

ПОВЕРХНОСТНЫЕ ВОДЫ

В апреле месяце отбор проб воды на территории Пензенской области проводился по 6-ти водным объектам: рекам Сура, Атмисс, Сердоба, Тешнярь, Пенза и Пензенском водохранилище. Было отобрано 19 проб воды, выполнено 657 анализов по 45 ингредиентам.

Наблюдения за качеством воды в Π ензенском водохранилище ведется в одном створе — "10 м выше плотины".

Загрязненность воды створа легкоокисляемыми органическими веществами по БПК₅ зафиксирована на уровне 2,1 ПДК. Загрязненность воды в створе соединениями меди составила 2,2 ПДК, железом общим – 1,2 ПДК. Содержание фенолов в водах створа на уровне 1 ПДК.

Содержание взвешенных веществ в воде — 11 мг/л. Содержание растворенного кислорода 7,7 мг/л. Сероводород отсутствует.

Река *Сура* — правобережный приток р. Волги. Наблюдения за качеством поверхностных вод р. Суры в районе г. Пензы проводятся в трех створах: в створе "выше города", который является фоновым, и в двух контрольных створах — в "черте города" и в створе "7 км ниже города".

В фоновом створе загрязненность воды легкоокисляемыми органическими веществами по БПК $_5$ зафиксирована в пределах 2,1 ПДК. Загрязненность створа р. Суры соединениями меди составила 3,2 ПДК, железо общее — на уровне ПДК. Содержание фенолов в створе составило 3 ПДК.

Уровень загрязнения взвешенными веществами в воде створа — 13 мг/л. Содержание растворенного кислорода 8,9 мг/л. Сероводород отсутствует.

В черте города загрязненность воды легкоокисляемыми органическими веществами по БПК $_5$ зафиксирована на уровне 2,1 ПДК. Загрязненность р. Суры соединениями меди составила 3 ПДК, железом общим — 1,4 ПДК. Содержание азота нитритного в поверхностных водах створа на уровне 3,1 ПДК, азота аммонийного — 1,9 ПДК. Содержание фенолов в створе на уровне 2 ПДК. Уровень загрязнения взвешенными веществами в воде створа — 70 мг/л. Содержание растворенного кислорода 8,4 мг/л. Сероводород отсутствует.

В створе "ниже города" загрязненность воды легкоокисляемыми органическими веществами по БПК $_5$ зафиксирована на уровне 2,2 ПДК. Уровень загрязнения азотом аммонийным составил 1,9 ПДК, азотом нитритным -2,6 ПДК. Концентрация фенолов в створе находилась на уровне 4 ПДК. Загрязненность воды в створе соединениями меди составила 3,5 ПДК, железом общим – 1 ПДК.

Содержание в воде растворенного кислорода –8,3 мг/л, взвешенных веществ 71 мг/л. Сероводород отсутствует.

Река *Атмисс* — левобережный приток реки Мокша. На реке Атмисс два пункта наблюдений — "1 км выше г. Каменка" и "2 км ниже г. Каменка".

Загрязненность воды легкоокисляемыми органическими веществами по БПК $_5$ в створе "выше города" на уровне 2,3 ПДК. Уровень загрязнения соединениями меди в створе составлял 3,6 ПДК; железа общего 1,5 ПДК. Уровень содержания фенолов в створе составил 2 ПДК. Концентрации азота аммонийного зафиксированы в пределах 1 ПДК, азота нитритного – 1,7 ПДК. В створе "ниже города" загрязненность воды легкоокисляемыми органическими веществами по БПК $_5$ составила 2,1 ПДК. Уровень загрязнения соединениями меди составил 3 ПДК, железом общим 1 ПДК. Концентрации азота нитритного зафиксированы в пределах 1,7 ПДК. Уровень содержания фенолов в створе 2 ПДК.

Содержание в воде растворенного кислорода в обоих створах - 8,2-7,7 мг/л, взвешенных веществ 146 -118 мг/л соответственно. Сероводород отсутствует.

Река *Пенза* является левобережным притоком р. Суры. Наблюдения за качеством воды в реке проводятся в створе "1 км ниже устья р. Пенза".

Загрязненность воды легкоокисляемыми органическими веществами по БПК₅ составила 2,2 ПДК. Загрязненность воды азотом аммонийным зафиксирована на уровне 2,9 ПДК, азотом нитритным – 2,6 ПДК. Уровень загрязненности воды соединениями меди составил 3,2 ПДК, железа общего 1,5 ПДК. Содержание фенолов в водах створа на уровне 2 ПДК. Содержание взвешенных веществ в воде – 119 мг/л. Содержание растворенного кислорода 8,4 мг/л. Сероводород отсутствует.

Река Сердоба является левобережным притоком р. Хопер. На реке Сердоба два створа пункта наблюдений: "1 км выше города" и "2 км ниже города". Уровень загрязнения легкоокисляемыми органическими веществами по БПК₅ в створе "выше города" составил 2,4 ПДК. В створе "выше города" концентрации соединений меди составили 3,5 ПДК. Концентрации фенолов составляли 3 ПДК. Уровень загрязнения азотом аммонийным зафиксирован на уровне 1,5 ПДК, азота нитритного – 1,2 ПДК. В створе "ниже города" загрязненность соединениями меди Уровень составила 2,3 ПДК. загрязнения легкоокисляемыми органическими веществами по БПК5 в створе "ниже города" составил 2,1 ПДК. Уровень загрязнения азотом аммонийным зафиксирован на уровне 1,6 ПДК, азотом нитритным – 1,1 ПДК. Загрязненность воды фенолом зарегистрирована на уровне 3 ПДК.

Содержание в воде растворенного кислорода -8.7 - 8.0 мг/л, взвешенных веществ 13-11 мг/л. Сероводород отсутствует.

Река Тешнярь является правобережным притоком р. Суры в ее верхнем течении. Наблюдения за качеством поверхностных вод р. Тешнярь проводятся в 2-х створах: "1 км выше поселка" и "2,5 км ниже поселка" Сосновоборск. Загрязненность воды легкоокисляемыми органическими веществами по БПК₅ в створе "выше поселка" составила 2,2 ПДК. Загрязненность реки соединениями меди в створе "выше города" наблюдалась на уровне 3,1 ПДК, железом общим – 1,2 ПДК. Концентрация фенолов в створе составила 2 ПДК. Уровень загрязнения азотом аммонийным зафиксирован в пределах 2 ПДК, азотом нитритным – 2 ПДК. "ниже города" загрязненность воды легкоокисляемыми В створе органическими веществами по БПК5 составила 2,1 ПДК. Концентрации соединений меди зафиксированы на уровне 3 ПДК, железа общего – 1,2 ПДК. Загрязненность створа фенолами соответствовала уровню 2 ПДК. Уровень загрязнения азотом аммонийным зафиксирован в пределах $1,9 \Pi$ ДК, азотом нитритным – $1,9 \Pi$ ДК.

Содержание в воде растворенного кислорода -8,6 - 8,5 мг/л, взвешенных веществ 49 - 36 мг/л соответственно. Сероводород отсутствует.

Критерии оценки загрязненности поверхностных вод для водных объектов, имеющих рыбохозяйственное значение

Таблица 4

No	Ингредиенты и	Класс	Используемые критерии			
Π/Π	показатели	опас-	ПДК,	B3*	ЭВ3*	
		ности	мг/л	мг/л	$\mathrm{M}\Gamma/\mathrm{J}$	
1.	Взвешенные вещества	-	Фон +	-	-	
			0,75 мг/л			
2.	Раствор. кислород	-	зимой – 4,0	3	2	
			летом $-6,0$			
3.	Магний	-	40,0	400	2000	
4.	Хлориды	4	300,0	3000	15000	
5.	Сульфаты	4	100,0	1000	5000	
6.	Кальций	-	180,0	1800	9000	
7.	ХПК	усл. 4	15,0	150	750	
8.	БПК5	-	не более 2	10	40	
9.	Азот аммонийный	4	0,4 (по азоту)	3,9	19,5	
10.	Азот нитритный	4	0,02 (по азоту)	0,2	1,0	
11.	Азот нитратный	3	9,1 (по азоту)	91	455	
12.	Фосфаты	-	0,2	2,0	10,0	
13.	Железо общее	4	0,1	3,0	5,0	
14.	Медь	3	0,001	0,030	0,050	
15.	Цинк	3	0,01	0,10	0,50	
16.	Хром 6-ти валентный	3	0,02	0,20	1,00	
17.	Хром 3-х валентный	-	0,07	0,7	3,5	
18.	Свинец	2	0,006	0,018	0,030	
19.	Кадмий	2	0,005	0,015	0,025	
20.	Алюминий	4	0,04	0,4	2,0	
21.	Марганец	4	0,01	0,3	0,5	
22.	Ртуть (мкг/л)	1	0,01	0,03	0,05	
23.	Фенолы	3	0,001	0,030	0,050	
24.	Нефтепродукты	4	0,05	1,50	2,5	
25.	СПАВ	-	0,1	1,0	5,0	
26.	Сульфиды	3	0,005	0,05	0,25	
27.	ДДЭ, ДДТ	1	Отс.	Отс.	Отс.	
	αиγ-ГХЦГ		(0,00001 усл.)	(0,00003 усл)	(0,00005 усл)	
23.	Фенолы	3				
24	рН		6,5-8,5			

РАДИАЦИОННЫЙ МОНИТОРИНГ

На территории Пензенской области проводятся регулярные наблюдения за мощностью экспозиционной дозы гамма-излучения (МЭД) на открытой местности на 8 метеостанциях, за апрель 2022 года проведено 240 измерений.

На МС Пенза проводятся наблюдения за радиоактивными выпадениями из атмосферы с помощью марлевых планшетов. За апрель 2022 года было отобрано на суммарную бета-активность 30 марлевых планшетов и 6 проб радиоактивных веществ в приземном слое атмосферы.

В апреле месяце радиационная обстановка была стабильной и находилась в пределах естественного радиационного фона, случаев ВЗ и ЭВЗ не наблюдалось. Превышения критического значения МЭД, вычисленного для каждой метеостанции по результатам измерений за прошлые годы, не зафиксировано.

Начальник Пензенского ЦГМС - филиала ФГБУ «Приволжское УГМС»

В.И. Неворотова